

Louvolite Perfect Fit

STEP BY STEP MEASURING GUIDE
~LLOUVOLITE

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Will the Conservatory Roof accept Louvolite Perfect Fit?

Does it have a rubber gasket seal?
Does it have a spar depth of at least 12 mm ?

IF YES, please proceed

Roof Style - is it Flush or Recess? Hybrid or Recess Straight Slope?

FLUSH

Survey Sheet		LOUVO
Order No		
Style:	Roof	
Frame colour:	White \square Brown \square	
Roof style:	Flush \square Recess \square	Hybrid
	Recess Straight Slope	
Roof Apex fitting:	Close \square Level \square	
Roof Base fitting:	Butt up to fascia $\quad \square$	Drop behind fascia
Style:	Windows/doors $\quad \square$	Skyligh

Perfect Fit

Roof Style - is it Flush or Recess? Hybrid or Recess Straight Slope?

RECESS

| Survey Sheet | |
| :--- | :--- | :--- | :--- |
| Order No | |

HYBRID

Survey Sheet		LOUVO
Order No	
Style:	Roof \square	
Frame colour:	White \square Brown \square	
Roof style:	Flush \square Recess \square	Hybrid ∇
	Recess Straight Slope	\square
Roof Apex fitting:	Close \square Level \square	
Roof Base fitting:	Butt up to fascia \square	Drop behind fascia
Style:	Windows/doors $\quad \square$	Skyligh

Hybrid is a combination of Flush and Recess style roofs.

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Roof Style - is it Flush or Recess? Hybrid or Recess Straight Slope?

RECESS STRAIGHT SLOPE

| Survey Sheet | |
| :--- | :--- | :--- | :--- |
| Order No | |

'Negative slope' in Conservatory roof's

Negative slope in a conservatory roof creates some fitting difficulties for the Perfect Fit International system. If you are unsure if the roof you are proposing to install Perfect Fit International, please check using this simple method.

A. Place the MGB against the glass, with the side of the MGB touching the roof spar in question. If there is a gap between the MGB and the point where the glass/seal contacts the roof spar, there is 'negative slope'.
B. At this moment in time, Perfect Fit International will not be a suitable product for installation.

Perfect Fit
 LOUVOLITE ${ }^{*}$

CONTENTS

1. BasicsA. ChecklistB. Survey Form
C. Roof Blind Numbering System 9
D. Window Side Numbering System 10 0
E. Special Instructions 123. Recess Fit Roof
2. Flush Fit Roof 14
3. Hybrid Roof 31
4. Recess Straight Slope Roof 32
5. 1 over 2 32624

Perfect Fit
 LOUVOLITE ${ }^{*}$

1. BASICS

A. Checklist

Measuring Guide Block

The Louvolite measuring guide block (MGB) is a specially engineered tool designed to help measure roof shapes.

A. Checklist

\square Pencil
\square Tape measure
\square Telescopic measuring tool
$\square 6^{\prime \prime}$ rule
$\square 1$ metre rule
\square Measuring guide block
$\square 90 \mathrm{~mm}$ Flush Fit / 120 Recess Fit gauge
\square White marker

B. Survey Form

Overview

Ensure you are familiar with this survey form - it will be referred to in this tutorial.

1. This edge is curved. This allows the guide to lie flat against the glass/ polycarbonate roof and be pushed up to the side profile clearing the roof frame's rubber gasket seal.
2. This edge is straight.

3/4 These edges are bevelled to assist with accurate marking of the roof spars at specified locations.

Two engineered grooves are visible on both faces of the MGB which are:
Face side 24 mm / Reverse side - 28 mm

IN THE CASE OF:

Flush Fit style (use 24 mm grooves) / 1 over 2 style (use 28 mm grooves).

The MGB can be offered to the gap between the side fascia and roof profile.
This will determine if a Perfect Fit Frame will "Butt-up" or "drop behind" the fascia.

Perfect Fit
 LOUVOLITE ${ }^{\circledR}$

B. Survey Form

Frame Colour

Tick the customer's frame colour preference.

Customer requires White Perfect Fit ${ }^{\circledR}$ frame

Order No		गLOUVOLITE			
	No e colour: style:				
Roof Base fitting: Butt up to fascia \square Drop behind fascia \square					
Style: Frame colour:		Windows/doors $\square \quad$ Skylight \squareWhite $\square \quad$ Brown $\square \quad$ Silver $\square \quad$ Black \squareGolden Oak $\square \quad$ Mahogany $\square \quad$ Anthracite \square			
Window depth: \qquad mm :S \& TAKEN FROM A WORMS EYE VIEW \square					
$\begin{gathered} 6 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	Cowling to apex mark	$\begin{gathered} \text { Ridge } \\ \text { allowance } \end{gathered}$	Special Instructions	$\begin{array}{r} \text { Skylight } \\ \text { Model No. } \end{array}$	$\begin{aligned} & \text { theos } \\ & \text { Code No. } \end{aligned}$

Customer requires Brown Perfect Fit ${ }^{\circledR}$ frame

(Window depth can be discarded in this tutorial)

What is "Apex"

The term Apex is used to identify where the top of the blind is going to finish. There must be a minimum apex width of 90 mm for flush fit and 120 mm for recess, hybrid and recess straight slope to allow for appropriate space for headrail installation.

Roof Apex Fitting - Close or Level?

Some of the roof shapes will meet at a common point at the ridge of the conservatory and be covered by a ceiling rose.

The customer will need to be asked:

1. If they want each blind fitted to the closest point to the ridge that the minimum 90 mm (for flush fit) / 120mm (for recess, hybrid \& recess straight slope) requirement will allow.

See CLOSE fit.

OR

2. If they want all the blinds to end level with the blind furthest from the ridge of the roof.
See LEVEL fit.

Perfect Fit
 LOUVOLITE ${ }^{\ominus}$

B. Survey Form

Roof Apex Fitting - Close

Survey Sheet
Loúvo
Order No
Style:
Frame colour:

$$
\text { Roof } \quad \square
$$

White \square Brown \square
Flush \square Recess \square Hybrid \square
Recess Straight Slope
Roof Apex fitting: Close \square Level
Roof Base fitting: Butt up to fascia \square Drop behind fascia
Style:
Windows/doors $\quad \square$
Skyligh

Roof Apex Fitting - Level

Perfect Fit
 LOUVOLITE ${ }^{*}$

B. Survey Form

Cowling to Apex Mark

Use a rule to measure the cowling to Apex mark. Alternatively, if it is felt there may be an obstruction that interferes with the triangular shapes natural extension into a point record this distance.

C. Roof blind numbering system

Worms Eye View?

The recommended method to number and match the roof shapes is to take a "worms eye" view of the roof.

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

C. Roof blind numbering system

Blind Numbering

The shapes of the roof blinds must be numbered to help match blinds to shapes during installation

Then, consecutive blinds should be numbered from left to right.

Enter the Conservatory, stand with your back to the house and number the first roof shape to your left hand side as "1" with the white marker.

D. Window side numbering system

Shape Side Numbering

The roof shape sides must be numbered as shown in the survey form (pg 6).

Roof Blind Shapes

	3	
2	A	4
Base		

* See note

* See note

* Please Note

On roof shapes B, E \& F where a four sided frame is specifically required, please insert a number 1 in the 'Cowling to Apex' column. This will automatically create a four sided frame

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

The recommended method to number the roof shapes is as follows:

1. Face the roof window at all times.
2. From blind 1 - Start with the side of the shape where the roof meets the wall fascia. This is the "base".
3. The remaining sides will be $2,3,4$ and 5 etc consecutively in a clockwise direction.
4. At the apex of the shape where the headrail sits - this should be counted as another side.

D. Window side numbering system

Roof Blind Shape - A

This shape can be identified as an "A" Shape Blind (see survey form).

When facing the roof window the sides will be numbered as follows...

Notice the clockwise assignment of numbers to sides.

Roof Blind Shapes - B, C \& D

Perfect Fit
 LOUVOLITE ${ }^{*}$

Roof Blind Shapes - E, F \& G

E. Special instructions

Special Instructions (1)

Record any special instructions where necessary, e.g. dimensions of obstructions. Instructions on how to record common obstructions such as tie bars and trickle vents can be found on the reverse of the survey form.
1.

3.

2. Common Obstructions

The measurements of obstructions should be listed in the 'Special Instructions' section of the survey form

Other obstructions

- These should be drawn in the 'drawing' section of the form, from a worms eye view

Identify each drawing with a number and put the corresponding number in the designated box in the 'special instructions' section of the form.
Give all important dimensions a number from 1 upwards (as in the diagrams above).

- Record each measurement in the 'special instructions' section

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Special Instructions (2)

Roof Tie Brackets

Special Instructions (3)

Roof Tie Brackets

Take measurements of the following using a "worms eye" viewpoint:

1. Minimum width from spar edge to top LHS of roof tie bracket.
2. Minimum width from spar edge to top RHS of roof tie bracket.
3. Minimum width from spar edge to bottom LHS of roof tie bracket.
4. Minimum width from spar edge to bottom RHS of roof tie bracket.
5. Length of roof tie bracket.

6. Distance from bottom of roof tie bracket to top of Fascia.

Perfect Fit
 LOUVOLITE ${ }^{*}$

Special Instructions (4)

Trickle Vents

Take measurements of the following using a "worms eye" viewpoint:

1. Width of trinkle vent.

2. FLUSH FIT ROOF

Roof Based Fitting (1)

IMPORTANT - All information slides relating to Flush fit criteria follow logical sequence to conclusion.

This procedure is to determine if the Perfect Fit Frame will "Butt-up" or "drop behind" the fascia. Use the groove in the MGB to determine if the blind will fit behind the fascia and roof spar.

The representation above shows that if gap " x " is greater than 24 mm , then the Perfect Fit frame will drop behind the fascia when manufactured.

Perfect Fit
 LOUVOLITE ${ }^{*}$

Roof Based Fitting (2) "Butt-up" or "drop behind"

Butt-up in the example - the Perfect Fit frame 'butts up' to the wall fascia.

Drop behind in the example - the Perfect Fit frame 'drops behind' the wall fascia.

In this scenario - ensure there is at least 24 mm clearance on all blinds that meet the wall fascia.

Flush Fitting Guide (1)

In the corner of the base side, place the "Face" side of the MGB flat onto the roof spar with edge 1 (curved edge) touching the glass.

Perfect Fit
 LOUVOLITE ${ }^{\circledR}$

Flush Fitting Guide (2)

Slide the MGB down until it meets the fascia.

Flush Fitting Guide (3)

Mark the roof spar at both ends of the MGB where it is positioned.

Perfect Fit
 LOUVOLITE ${ }^{*}$

Flush Fitting Guide (4)

Once the customer has stated their preference between a close or level fit - follow the procedure to ensure measurements and reference marks are taken correctly.

Flush Fitting Guide (5) Close fit

Use the side of the 90 mm gauge to determine the Apex for triangular roof shapes.
Note: The green line in the illustration is the distance to measure.

Ensure the gauge is parallel to the base.

Perfect Fit
 LOUVOLITE ${ }^{*}$

Flush Fitting Guide (6) Close Fit

Now use the side of 90 mm gauge to find the remaining 90 m Apex distances for each of the spars that meet up to the ceiling rose.

Note: The green line in the illustration is the distance to measure.

Ensure the gauge is parallel to the base.

Flush Fitting Guide (7) Close Fit

Place the MGB on either side of the spar and mark with a pencil from the 90 mm gauge. Then repeat on all roof spars that meet up to the ceiling rose.
Note: The green line in the illustration is the distance to measure.

18

Perfect Fit
 LOUVOLITE ${ }^{*}$

Flush Fitting Guide (8) Level Fit

Use the 90 mm gauge to determine the Apex for triangular roof shapes that meet up to a ceiling rose.

Note: The green line in the illustration is the distance to measure.

The method to determine where the apex of the blind will end is to measure the maximum distance between the apex and ceiling rose, i.e. in the example above, if A is the furthest away from the ceiling rose, then all blinds will end to that apex mark.

Flush Fitting Guide (9) Level Fit

Once the Apex for level fit is determined, simply use a rule to transfer the apex reference mark across the roof spars.
Note: The green line in the illustration is the distance to measure.

Ensure the reference marks are parallel to the base.

Place the MGB on either side of the spar and mark with a pencil from the 90 mm gauge - them repeat on all roof spars that meet up to the ceiling rose.

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Cowling to Apex Mark

Use a rule to measure the cowling to Apex mark. Alternatively, if it is felt there may be an obstruction that interferes with the triangular shapes natural extension into a point record this distance.

In this example the cowling to apex is sown as " x ".

Flush Fit Roof

Important - Following sections show FLUSH roof shape examples. The information includes MGB markings and how to take measurements from each location.

Note: The MGB markings will be shown in RED.

Roof Blind Shape A.
Bracket location marks - use your MGB!

Blind Number	Shape A-G	Base width (mm)	$\mathbf{2}$ (mm)	$\mathbf{3}$ (mm)	$\mathbf{4}$ (mm)	$\mathbf{5}$ (mm)	$\mathbf{6}$ (mm)	Cowling to apex mark	Quadrant beading	Ridge allowance	Special Instructions	Skylight Codes Model No. Code No.
	A	X^{1}	X^{2}	X^{3}	X^{4}							Yes/No
											Yes/No	

Perfect Fit
 LOUVOLITE ${ }^{\circledR}$

Roof Blind Shape B.

| Blind
 Number | Shape
 A-G | Base width
 (mm) | $\mathbf{2}$
 (mm) | $\mathbf{3}$
 (mm) | $\mathbf{4}$
 (mm) | $\mathbf{5}$
 (mm) | $\mathbf{6}$
 (mm) | Cowling to
 apex mark | Quadrant
 beading | Ridge
 allowance | Special
 Instructions | Skylight Codes
 Model No.
 Code No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | B | X^{1} | X^{2} | 90 | X^{4} | | | | | | Yes/No | |
| | | | | | | | | | | | Yes/No | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Why is X^{3} equal to a minimum of 90 mm ?
For flush fit - allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 90 mm .

Roof Blind Shape C.

$\begin{aligned} & \text { Blind } \\ & \text { Number } \end{aligned}$	$\begin{gathered} \text { Shape } \\ \text { A-G } \end{gathered}$	$\begin{array}{\|c} \hline \text { Base width } \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6} \\ (\mathrm{mm}) \end{gathered}$	Cowling to apex mark	Quadrant beading	$\begin{gathered} \begin{array}{c} \text { Ridge } \\ \text { allowance } \end{array} \\ \hline \end{gathered}$	Special Instructions	Skylight Codes Model No. Code No.	
	C	X^{1}	X ${ }^{2}$	90	X ${ }^{4}$				X^{5}		Yes / No		
											Yes/No		
											Yes/No		
											Yes/No		

The bracket location mark for a sloping side can be determined by calculating the midpoint of the sloping side.
i.e X^{4} divided by 2 = location mark.

Why is X^{3} equal to a minimum of 90 mm ?
For flush fit - allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 90 mm .

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Roof Blind Shape D.

$\begin{array}{\|c\|} \hline \text { Blind } \\ \text { Number } \\ \hline \end{array}$	$\begin{aligned} & \text { Sape } \\ & \text { A.G } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Base width } \\ (\mathrm{mm}) \end{array}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (m \mathrm{~m}) \end{gathered}$	$\stackrel{4}{(m \mathrm{~m})}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{6}_{(\mathrm{mm})} \end{gathered}$	Cowling to apex mark	$\begin{aligned} & \text { Quadrant } \\ & \text { beading } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ridge } \\ \text { allowance } \\ \hline \end{gathered}$	$\begin{gathered} \text { Special } \\ \text { Instructions } \end{gathered}$	Skylight Codes Model No. Code No.	
	D	X ${ }^{1}$	X ${ }^{2}$	X^{3}	90				X^{5}		Yes/No		
											Yes / No		
											Yes/No		
											Yes/No		

Why is X^{4} equal to a minimum of 90 mm ?
For flush fit - allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 90 mm .

The bracket location mark for a sloping side can be determined by calculating the midpoint of the sloping side.
i.e X^{3} divided by 2 = location mark.

Roof Blind Shape E.

| Blind
 Number | Shape
 A-G | Base width
 (mm) | $\mathbf{2}$
 (mm) | $\mathbf{3}$
 (mm) | $\mathbf{4}$
 (mm) | $\mathbf{5}$
 (mm) | $\mathbf{6}$
 (mm) | Cowling to
 apex mark | Quadrant
 beading | Ridge
 allowance | Special
 Instructions | Skylight Codes
 Model No.
 Code No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | E | X^{1} | X^{2} | 90 | X^{4} | | | | | | Yes/No | |
| | | | | | | | | | | | Yes/No | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Why is X^{3} equal to a minimum of 90 mm ?

For flush fit - allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 90 mm .

Perfect Fit
 LOUVOLITE ${ }^{\circledR}$

Roof Blind Shape F.

Blind Number	$\begin{array}{\|c\|} \hline \text { Shape } \\ \text { A-G } \\ \hline \end{array}$	Base width (mm)	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{5} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6} \\ (\mathrm{mm}) \end{gathered}$	Cowling to apex mark	Quadrant beading	$\begin{gathered}\text { Ridge } \\ \text { allowance }\end{gathered}$	Special Instructions	Skylight Codes Model No. Code No.	
	F	X ${ }^{1}$	X ${ }^{2}$	90	X ${ }^{4}$						Yes / No		
											Yes/No		
											Yes/No		
											Yes/No		

Why is X^{4} equal to a minimum of 90 mm ?
For flush fit - allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 90 mm .

Roof Blind Shape G.

$\begin{aligned} & \text { Blind } \\ & \text { Number } \end{aligned}$	$\begin{aligned} & \text { Shape } \\ & \text { A-G } \end{aligned}$	Base width (mm)	$\begin{gathered} 2 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	Cowling to apex mark	Quadrant beading	$\begin{gathered} \text { Ridge } \\ \text { allowance } \end{gathered}$	Special Instructions	Skylight Codes Model No. Code No.	
	G	X^{1}	X^{2}	X^{3}	90	X^{5}	X^{6}				Yes / No		
											Yes / No		
											Yes / No		
											Yes/No		

The bracket location mark for a sloping side can be determined by calculating the midpoint of the sloping side.
i.e $X^{3} \& X^{5}$ divided by 2 = location mark.

Why is X^{4} equal to a minimum of 90 mm ?
For flush fit - allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 90 mm .

Perfect Fit
 LOUVOLITE ${ }^{*}$

3. RECESS FIT ROOF

IIMPORTANT - All information slides relating to recess fit criteria follow in logical sequence to conclusion.

Quadrant Beading

When measuring a recess fit type roof - there is a possibility of quadrant beading in each roof shape. If so, measure the thickness if applicable.

The typical quadrant thickness is $10 / 11 \mathrm{~m}$.

Recess Fitting Guide (1)

Place the MGB reverse side against the side of the quadrant beading. MGB side 1 (curved side) should be facing the rubber gasket seal. Now mark both sides of the quadrant beading.

This mark is a bracket location reference point.

Recess Fitting Guide (2)

Once the customer has stated their preference between a CLOSE or LEVEL fit - follow the procedure to ensure measurements and reference marks are taken correctly.

Perfect Fit

Recess Fitting Guide (3) - CLOSE FIT

Use the side of the 120 mm gauge to determine the Apex for triangle roof shapes.

Note: The green line in the illustration is the distance to measure.

Recess Fitting Guide (4) - CLOSE FIT

Now use the side of the 120 mm gauge to find the remaining 120 mm apex distances for each of the spars that meet up to the ceiling rose.

Note: The green line in the illustration is the distance to measure.

Ensure the gauge is parallel to the base.

Recess Fitting Guide (5) - CLOSE FIT

Note: The green line in the illustration is the distance to measure.

Place the MGB on either side of the spar and mark with a pencil from the side of the 120 mm gauge - then repeat on all roof spars that meet up to the ceiling rose.

Perfect Fit
 LOUVOLITE ${ }^{\circledR}$

Recess Fitting Guide (6) - LEVEL FIT

Use the side of the 120 mm gauge to determine the Apex for triangular roof shapes that meet up to the ceiling rose.

Note: The green line in the illustration is the distance to measure.

The method to determine where the apex of the blind will end is to measure the maximum distance between the apex and ceiling rose, i.e. in the example above, if A is the furthest away from the ceiling rose, then all blinds will end to that apex mark.

Recess Fitting Guide (7) - LEVEL FIT

Once the apex for level fit is determined, simply use a rule to transfer the apex reference mark across the roof spars.

Note: The green line in the illustration is the distance to measure.

Ensure the reference marks are parallel to the base.

Place the MGB on either side of the spar and mark with a pencil from the side of the 120 mm gauge then repeat on all roof spars that meet up to the ceiling rose.

Perfect Fit
 LOUVOLITE ${ }^{*}$

Ridge Allowance (1)

The ridge is a large beam that runs along the middle of the conservatory and is usually the highest point inside the roof.

Ridge Allowance (2)

If the roof window shape is a rectangle, an extra measurement is required to make an allowance to ensure Perfect Fit frame will clear the ridge cover during fitting.

The measurement required is the distance between the roof ridge and ridge cover as shown below.

Cowling to Apex Mark

Use a rule to measure the cowling to Apex mark. Alternatively, if it is felt there may be an obstruction that interferes with the triangular shapes natural extension into a point record this distance.

In this example

- the cowling to apex distance is shown as " x ".

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Recess Roof Blind Shapes

IIMPORTANT - Following sections show RECESS roof shape examples. The information includes MGB markings and how to take measurements from each location.

Note: The MGB markings will be shown in RED.

MGB markings!

Ensure MGB is rested on the quadrant beading before the bracket locations are determined.

Roof Blind Shape A.

$\begin{gathered} \text { Blind } \\ \text { Number } \end{gathered}$	$\begin{gathered} \text { Shape } \\ \text { A-G } \end{gathered}$	Base width (mm)	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	Cowling to apex mark	Quadrant beading	Ridge allowance	Special Instructions	Skylight Codes Model No. Code No.	
	A	X^{1}	X^{2}	X^{3}	X ${ }^{4}$				$\mathrm{X}^{\text {¢ }}$		Yes / No		
											Yes / No		
											Yes / No		
											Yes / No		

Roof Blind Shape B.

Blind Number	$\begin{aligned} & \text { Shape } \\ & A .-G \end{aligned}$	Base width (mm)	$\begin{gathered} 2 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4 \\ (m m) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \underset{(m m)}{6} \end{gathered}$	Cowling to apex mark	Quadrant beading	$\begin{gathered} \text { Ridge } \\ \text { allowance } \end{gathered}$	Special Instructions	Skylight Codes Model No. Code No	
	B	X^{1}	X^{2}	120	X^{4}				$\mathrm{X}^{\text {® }}$		Yes / No		
											Yes / No		
											Yes / No		
											Yes / No		

Why is X^{3} equal to a minimum of 120 mm ?
For recess fit - to allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 120 mm .

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Roof Blind Shape C.

The bracket location mark for a sloping side can be determined by calculating the midpoint of the sloping side.
i.e X^{4} divided by $2=$ location mark.

Why is X^{3} equal to a minimum of 120 mm ?
For recess fit - to allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 120 mm .

$\begin{array}{\|c\|} \hline \text { Blind } \\ \text { Number } \end{array}$	$\begin{gathered} \text { Shape } \\ \text { A-G } \\ \hline \end{gathered}$	$\begin{gathered} \text { Base width } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	Cowling to apex mark	Quadrant beading	Ridge allowance	Special instructions	Skyligh Model No.	Codes Code No.
	C	X ${ }^{1}$	X^{2}	120	X ${ }^{4}$	X^{5}			$\mathrm{X}^{\text {® }}$		Yes / No		
											Yes / No		
											Yes / No		
											Yes / No		

Roof Blind Shape D.

The bracket location mark for a sloping side can be determined by calculating the midpoint of the sloping side.
i.e X^{3} divided by $2=$ location mark.

Why is X^{4} equal to a minimum of 120 mm ?
For recess fit - to allow for a headrail of 70 mm for blind to be installed blind side X^{4} will need to measure a minimum of 120 mm .

Blind Number	$\begin{aligned} & \text { Shape } \\ & \text { A-G } \end{aligned}$	$\begin{gathered} \text { Base width } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{6} \\ (\mathrm{mm}) \end{gathered}$	Cowling to apex mark	Quadrant beading	Ridge allowance	Special Instructions	Skylight Codes Model No. Code No.	
	D	X^{1}	X^{2}	X^{3}	120	X^{5}			$\mathrm{X}^{\text {OB }}$		Yes / No		
											Yes / No		
											Yes / No		
											Yes / No		

Perfect Fit
 LOUVOLITE ${ }^{\circ}$

Roof Blind Shape E.

Why is X^{3} equal to a minimum of 120 mm ?
For recess fit - to allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 120 mm .

Blind Number	Shape A-G	Base width (mm)	$\mathbf{2}$ (mm)	$\mathbf{3}$ (mm)	$\mathbf{4}$ (mm)	$\mathbf{5}$ (mm)	$\mathbf{6}$ (mm)	Cowling to apex mark	Quadrant beading	Ridge allowance	Special Instructions	Skylight Codes Model No. Code No.	
	E	X^{1}	X^{2}	120	X^{4}				$\mathrm{X}^{\text {QB }}$		Yes/No		
											Yes/No		

Roof Blind Shape F.

Why is X^{3} equal to a minimum of 120 mm ?
For recess fit - to allow for a headrail of 70 mm for blind to be installed blind side X^{3} will need to measure a minimum of 120 mm .

Blind Number	Shape $\mathrm{A} \cdot \mathrm{G}$	$\begin{array}{\|c\|} \hline \text { Base width } \\ (\mathrm{mm}) \end{array}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Cowling to apex mark	Quadrant beading	Ridge allowance	Special Instructions	Skyligh Model No.	Codes Code No.
	F	X^{1}	X^{2}	120	X ${ }^{4}$				$\mathrm{X}^{\text {QB }}$		Yes / No		
											Yes / No		
											Yes / No		
											Yes / No		

Perfect Fit
 LOUVOLITE ${ }^{*}$

Roof Blind Shape G.

The bracket location mark for a sloping side can be determined by calculating the midpoint of the sloping side.
i.e $X^{3} \& x^{5}$ divided by $2=$ location mark.

Why is X^{4} equal to a minimum of 120 mm ?
For recess fit - to allow for a headrail of 70 mm for blind to be installed blind side X^{4} will need to measure a minimum of 120 mm .

Blind Number	Shape A-G	Base width (mm)	$\mathbf{2}$ (mm)	$\mathbf{3}$ (mm)	$\mathbf{4}$ (mm)	$\mathbf{5}$ (mm)	$\mathbf{6}$ (mm)	Cowling to apex mark	Quadrant beading	Ridge allowance	Special Instructions	Skylight Codes Model No. Code No.	
	G	X^{1}	X^{2}	X^{3}	120	X^{5}	X^{6}		$\mathrm{X}^{\text {®B }}$			Yes/No	
											Yes/No		

4. HYBRID ROOF

Hybrid is a combination of both flush and recess roof styles.
Therefore when measuring a hybrid:

Remember to indicate (with a F/R) which side is flush (F) or recess (R) on the survey sheet!

Perfect Fit
 LOUVOLITE ${ }^{\circledR}$

5. RECESS STRAIGHT SLOPE ROOF

When measuring a recess straight slope use the recess measuring method:

One possible difference, there may be no quadrant beading.

Look out for obstructions at the base and top of the blind. There may be occasions when a 'drop behind' or 'ridge allowance' will need to be taken.

6. 1 OVER 2

Concept - Combining two roof panel shapes into one
N.B. Flush fit only!

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Louvolite Perfect Fit Survey Form: one blind over multiple windows

Fill in Customer's Details

Ensure Customer's requirements are taken

What is "Apex"

The term APEX is used to identify where the top of the blind is going to finish. There must be a minimum apex width of 90 mm to allow for appropriate space for headrail installation.

Roof Apex Fitting - Close or Level?

Some of the roof shapes will meet at a common point at the ridge of the conservatory and be covered by a ceiling rose.

The customer will need to be asked:

1. If they want each blind fitted to the closest point to the ridge that the minimum 90 mm requirement will allow.
See CLOSE fit.

OR 2. If they want all the blinds to end level with the blind furthest from the ridge of the roof.
See LEVEL fit.

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Roof Apex Fitting - Close

Roof Apex Fitting - Level

Perfect Fit
 LOUVOLITE ${ }^{*}$

Central Spars

There may be instances where a PVC spar runs through the Apex of a proposed combined shape - In these cases, ensure again an overall apex measurement of minimum 90 mm is taken.

In this example, the two blinds C \& D will be combined to make an overall shape G.

The Apex distance highlighted in green runs across the spar and should be a minimum 90 mm .

Roof Base Fitting (1)

This procedure is to determine if the Perfect Fit frame will "butt-up" or "drop behind" the fascia. Use the groove in the MGB to determine if the blind will fit between the fascia and roof spar.

The representation above shows that if gap " X " is greater than 28 mm , then the Perfect Fit frame will drop behind the fascia when manufactured.

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Roof Based Fitting (2) "Butt-up" or "drop behind"

Frame Colour: White \square	Brown \square	Fabric range	
Roof Style - flush fit only \square		Fabric colour	
Roof Apex fitting: Minimum 90mm \square Level \square			
Roof Base fitting: Butt up \square Drop behind fascia \square (Minimum of 28 mm if PVC spa affects top of the blind -			

Butt-up in the example - the Perfect Fit frame 'butts up' to the wall fascia.

Drop behind in the example - the Perfect Fit frame 'drops behind' the wall fascia.

In this scenario - ensure there is at least 28 mm clearance on all blinds that meet the wall fascia.

Measurement Basics

Measure each window individually as instructed in PFI "How to measure guide."

Example
The example highlighted can be identified as a "E" Shape because E $+\mathbf{C}=\mathrm{E}$.

Perfect Fit
 LOUVOLITE ${ }^{*}$

Recording Measurements

Blind No	Shape A - G	Overall Shape	Base width	2 (mm)	3 (mm)	4 (mm)	5 (mm)	6 (mm)	Cowling to Apex	Ridge allowance	Special instructions	PVC Spar width
1	E	E	\mathbf{X}^{1}	X^{2}	X^{3}	X^{4}					YES / NO	
2	D		X^{1}	X^{2}	X^{3}	X^{4}	X^{5}				YES / NO	
3	C	F	X^{1}	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}			YES/NO	
4	F		X^{1}	X^{2}	X^{3}	X^{4}	χ^{5}				YES/NO	
5	F		X^{1}	X^{2}	X^{3}	X^{4}					YES/NO	
											YES/NO	
											YES / NO	
											YES/NO	
											YES / NO	
											YES / NO	
											YES / NO	
											YES/NO	
											YES/NO	
											YES/NO	

Blind No	Shape A - G	Overall Shape
1	E	E
2	C	

Overall Shape, Blind Number \& Shape A-G Columns
These columns should confirm the New Shape to be created from the two existing shapes on the Louvolite Perfect Fit Survey Sheet.

Cowling to Apex Mark

Use a Rule to measure the cowling to Apex mark. Alternatively, if it is felt there may be an obstruction that interferes with the triangular shapes natural extension into a point - record this distance.

Cowling to Apex
\mathbf{X}

Fill this column for each blind on the Louvolite Perfect Fit Survey Sheet.

In this example - the cowling to apex distance is shown as " X ".

Perfect Fit
 LOUVOLITE ${ }^{*}$

Ridge Allowance

The Ridge is a large beam that runs along the middle of the conservatory and is usually the highest point inside the roof.

There are a number of points that need satisfying before a ridge allowance is taken.

1. Recess Roof style.
2. There is a Ridge.
3. There is some form of obstruction near the base.
4). Shape A (rectangle).

Ridge allowance
\mathbf{X}

Fill this column for each blind on the Louvolite Perfect Fit ${ }^{\oplus}$ survey sheet.

If the roof window shape is a rectangle, an extra measurement is required to make an allowance to ensure Perfect Fit frame will clear the ridge cover during fitting.

The measurement required is the distance between the roof ridge and ridge cover as shown below.

PVC Spar Width

PVC Spar width
\mathbf{X}

Fill this column for the two blinds that make the combined shape on the Louvolite Perfect Fit ${ }^{\circledR}$ survey sheet.

Perfect Fit
 LOUVOLITE ${ }^{\text {® }}$

Notch Cut-out

Use Multi Panel Punch (product code P9487) to cut away the profile as images shown.

Notes:

经

IULOUVOLITE

